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Abstract

Acoustic emission from transverse matrix cracks and fiber fracture in typical laminated tensile test specimens is
modeled. The acoustic sources are described as time dependent displacement discontinuities which subsequently are
translated to volume forces. The transient waves are computed using a finite element model of the specimen’s cross-
section. The finite element modeling leads to a system of differential equations in the axial coordinate and time. The
differential equations are solved using Fourier transforms and eigenmode superposition followed by inversion of the
transforms through residue calculus and FFT. Computed time histories for matrix cracking and fiber fracture are
presented. The highest frequency content in these signals corresponds typically to 300 kHz. A method to measure the
average matrix crack propagation velocity is suggested. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Final failure of composite laminate components is often preceded by significant damage of the material
in the component, for example by matrix cracking, fiber fracture and delamination. Understanding and
modeling of the damage processes are valuable tools in integrity assessment and design of such compo-
nents. A special feature of material degradation in polymer based composites, as opposed to metals, is that
the damage events are often very localized in space and time, and the physical dimensions of the damage are
often larger than in metals. This means that each damage event will produce a distinct stress pulse in the
specimen. Measuring the stress pulse, i.e. the acoustic emission (AE), is therefore a good way of monitoring
damage evolution experiments on composite materials.

The recent development in electronics has made it possible to record and store AE signals. Models of
the AE chain, from source to recorded signal, can then be used to identify and quantify the damage event —
so-called quantitative acoustic emission. A review on quantitative AE is presented by Scruby (1985), and
examples of use on composite materials can be found in the works by Gorman and Ziola (1991), Prosser
et al. (1995) and Qi et al. (1997).
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Modeling of the AE-chain can be divided into four basic parts. Modeling of damage (or source), wave
propagation from source to receiver, receiver response due to surface movement on the specimen and
modeling of the recording system behind the receiver, which often includes some wanted and unwanted
filtering. This work will be concerned with the first two aspects, that is source modeling and wave propa-
gation.

Burridge and Knopoff (1964) have shown that displacement discontinuities, or cracks, can be replaced
by equivalent volume forces, giving rise to the same wave field in the body. The volume forces and their
distribution can be summarized in a so-called moment tensor, provided that the dimensions of the dis-
placement discontinuity are much smaller than the dimensions of the body and the smallest wavelength
studied, see the work of Rice (1980). The moment tensor has been used extensively to analyze acoustic
emission in different materials and geometries, for example by Chang and Sachse (1986), Guo et al. (1996),
Landis and Shah (1993) and Ohtsu (1995).

Wave propagation in elastic waveguides has been studied for more than 100 years, and the arsenal of
methods is substantial, see for example the books by Graff (1991) and Miklowitz (1984). The well-known
analytical solutions for wave propagation in homogeneous isotropic plates and rods due to Lamb and
Pochhammer respectively may also be found in these books.

Anisotropic and inhomogeneous elastic waveguides, especially plates, have also been studied. A com-
monly employed technique for plates is to use integral transforms in time and the in-plane coordinates. The
equation describing motion in the vertical direction is then solved analytically or numerically. The sub-
sequent inversion of the in-plane coordinate transforms is often done using contour integration, evaluated
using residues, or by direct numerical integration. A good survey of the subject can be found in the in-
troduction of the work by Weaver et al. (1996).

Analysis of AE in large composite plates can also be done using approximate plate theories, such as the
Reissner—-Mindlin plate theory, see Guo et al. (1996). The plate theory is usually valid in the frequency
range of interest and the distance between the source and the receiver is often several plate thicknesses.
Experiments on large composite panels are, however, expensive and unpractical. In tensile test specimens
the distance between receiver and source is often of same order as the width of the specimen, and the use of
plate methods in this case is complicated by the boundaries in the width direction, see Liu et al. (1990). This
is especially true for broad band sources. )

An alternative to plate theory is a beam model. Aberg and Gudmundson (1999) have used a higher order
beam model to study wave propagation due to AE in tensile test specimen. It was, however, found that the
beam model, although it included the lowest optical mode, had a range of validity in frequency which was
too small. For typical test specimens the maximum frequency was 50 kHz whereas important AE fre-
quencies are up to 10 times higher (de Groot et al., 1995). In deriving the beam model a displacement field
for the whole cross-section was assumed, but another way to describe the displacement field is to divide the
cross-section into finite elements. This leads to an eigenvalue problem with frequencies or wave numbers as
eigenvalues or parameters, and the eigenvectors describe the displacements. Aalami (1973) and Talbot and
Przemieniecki (1975) were among the first to use this approach to compute dispersion relations and
eigenmodes for waveguides with homogeneous cross-sections. Volovoi et al. (1998) have done the same
for inhomogeneous rectangular cross-sections, and Huang and Dong (1984) for laminated circular cross-
sections. Transient axisymmetrical motion in laminated circular tubes has been studied by Kohl et al.
(1992a,b) using superposition of eigenmodes. Dispersion relations for propagating modes can also be
computed using standard finite element codes as described by Aberg and Gudmundson (1997).

In this work, transient wave motion in laminated tensile test specimens due to transverse matrix cracking
and fiber fracture is computed. The fiber fracture is modeled using a time dependent volume force, and
matrix cracking is described by a volume force depending on both position and time. Wave propagation is
modeled by dividing the cross-section into finite elements, leading to a system of ordinary differential
equations in the nodal displacements, which are functions of the axial coordinate and time. The system is
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solved using Fourier transforms, and the solution of the resulting algebraic problem is written as a su-
perposition of eigenmodes. Contour integration, using residue calculus, and FFT are used to invert the
transforms.

2. Source modeling

The modeling presented in this section is identical to the modeling in Aberg and Gudmundson (1999)
and is presented here for clarity reasons. A laminate and a Cartesian coordinate system according to Fig. 1
is considered. The laminate is made of transversely isotropic plies. It is infinite in the 1-direction and
bounded by free surfaces at x, = +b and x3 = +A. In modeling the sources, it is for simplicity assumed that
the damage occurs in plies with the symmetry directions along the 1- or 2-direction respectively (0°- and
90°-plies).

2.1. Matrix cracking

If the laminate under consideration is strained in the 1-direction, the first damage that typically appears
is matrix cracking in the 90°-layers. It is often, if not always, found that the cracks will initiate at one of the
edges and then propagate across the width of the specimen or stop within it, Prosser et al. (1995).

Consider a matrix crack at x; = 0 growing in the 2-direction. In the proceeding analysis, only wave-
lengths which are several ply thicknesses long will be considered. For a dynamically growing matrix crack,
it can be assumed that a steady state crack opening will develop at a distance of the order of a few ply
thicknesses behind the crack tip. Thus, if short wavelength information in the solution is ignored, the crack-
opening displacement in the 1-direction may be expressed as

Auy(x2,x3,1) = Au'™ (x3)Jm (X2, 7), (1)

where Au™® is the static crack-opening displacement of a crack in a laminate of infinite width subjected to
the same strain in the 1-direction and to generalized plane strain in the 2-direction. The function J;, may
within the same order of long wavelength approximation be expressed as

]Zh

L

2b

Fig. 1. Definition of coordinate system and geometry of the laminated specimen.
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(o t <0,
Jm(x27t) - {H(_XZ —b+ Ut) t= Oa (2)

where H is the Heaviside step function. On a global scale it is a reasonable model of a crack growing across
the entire width of the laminate with an average velocity, v. The crack-opening displacement may alter-
natively be viewed as a displacement discontinuity in the 1-direction. Using the work by Burridge and
Knopoff (1964), it can be expressed by equivalent volume forces, f;. The result in this case is

i =l Ui, DA (35)3x0), )
Xj
where J is the Dirac delta function and C;k, is the stiffness tensor of the 90°-ply containing the crack. The
function Au*®* has to be known in order to evaluate the expression in Eq. (3). One possible method is to
perform finite element computations on a two-dimensional plane-strain model representing the cracked
laminate and then fit an appropriate function to the resulting crack opening. Here an alternative method
will be used.

Gudmundson and Zang (1993) have proposed a method to compute the stiffness loss of a composite
laminate containing matrix cracks. This is based on the assumption that the crack opening is mainly in-
fluenced by the state in the cracked ply, and that the rest of the plies have negligible direct influence on the
crack opening. This method has been found to yield very good stiffness-loss estimations, Adolfsson and
Gudmundson (1995). Bearing this in mind, the opening of an internal matrix crack can be approximated
using the opening of a crack in an infinite plate under plane strain, and the opening of a surface crack can
be approximated by the opening of an edge crack in a semi-infinite plate under plane strain. Expressions for
these crack openings may be found in the book by Wu and Carlsson (1991). Please note that, within the
scope of the approximation, the anisotropy of the plies presents no problem since the material is isotropic in
the plane of the crack. Once Au™ is known, the volume forces according to Eq. (3) can be calculated.

2.2. Fiber fracture

Further straining of the specimen will among other types of damage cause fiber fracture. Whereas matrix
cracking is hardly localized to a point in a uniaxial test, fiber fracture approximately is. Here a fiber fracture
located at x; = 0, x, = by and x3 = h; within a 0°-ply is considered. The volume force is expressed as

0
fi= —ﬁSta‘Jf(t)ranifm P [5(]&'1)5()&'2 - bf)é()(} - hf)], (4)
J
where #*" is the average separation between the broken fiber ends under static loading, C};.k] the stiffness

tensor of the fiber and r the radius of the fiber. The time dependence is assumed to have the form

Jt/)r O<t<n,
ao={1" 05 ®
This means that the average separation increases linearly to the static value during a time period of length .
The value of #® can be estimated in different ways. Here, a simple estimate due to Cox will be used, see

Gibson (1994). Using Cox’s model and letting the fiber length approach infinity, the separation of the fiber
ends becomes

» [EfIn(1/V;
et — ar f n(g / f)7 (6)

where g is the strain in the 1-direction of the ply, r the radius of the fiber, £; the elastic modulus of the fiber,
V; the fiber volume fraction and G,, the shear modulus of the matrix material.
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3. Wave propagation

Based on Egs. (3) and (4) matrix cracking and fiber fracture may be represented by equivalent volume
forces. Below the resulting wave propagation will be considered.

3.1. Finite element formulation

In order to calculate the wave motion, the cross-section is discretized into finite elements by assuming a
displacement field according to

ui(xjvt) = QTi(xl>t)§£<x25x3)> (7)

where, the superscript T denotes transpose, U; is a column vector with nodal displacements in the i-di-
rection as its elements and ¢ is a column vector containing the basis functions ¢,,.

The material in the cross-section is assumed to be elastic transversely isotropic with the 1-, 2- or 3-di-
rections as symmetry directions. Thus, the constitutive relation can be expressed as

on cn cp c3 0 0 0 é11
on cn c»m c3 0 0 O &0
033 _ e o3 ocxn 0 0 0 €33 (8)
g23 0 0 0 C44 0 0 V23 ’
o1 0 0 0 0 Css5 0 Y12
L o5 0 0 0 0 0 Ce6 Y13

using the usual notation for stresses and strains. Hamilton’s principle is now used to derive differential
equations for the nodal displacements U,. Reflections from the ends of the specimen will not be treated in
this work and therefore boundary conditions are not included. The resulting system of differential equa-
tions is

U T\ 0U T\ U
0] gt ([ = (") 2 (1) = (R]T) 5.2 = (K3 + (K2, + F,
62
= M5t 9)
o*U T oy T
(K% — (] = [k ot = (1) + (K2 ) U, — (K] + KU, +
o*U
= M) 52 (19
U T oy T
] ot (IR (i) ) = (1) + [KE)) U, = (I + [KEDUs + £,
o*U

where the matrices are defined by

00 ,m, a(ﬂ aq)
K ICUQDCP dx3dx27 K Cl] ox ax 3dX2, (12)
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b ph
(k2] / / e dx3 do and (M= [ [ ppgTavdn, (13)
—b Jon
and p is the density. The force vectors, F;, are derived from
b ph
—b Jon

Please note, that the system of differential equations describe three-dimensional wave propagation and
source excitation even if x, and x; do not appear explicitly in Eqs. (9)—(11) or in the proceeding solution.

3.2. Transformed solution

The system of differential equations given by Egs. (9)—(11) are solved using the following Fourier
transform pairs in time and space

P = [ v tian, v = [P0 (15)
Vi (x1, @) = / V(s 1) dt, L/(xl,t):% / v (x1, 0)e " do. (16)

Employing the transforms to the differential equations leads to a system of algebraic equations for the
unknown transformed nodal displacements U*,

(1K) + iC[K] + [Ko) — 0 [Mro]) = £, (17)

where the vectors U* and F " are

U, o
0= |0,| ma E =
0, E,

The symmetric matrices [K;], [Ko] and [Mre] are defined by

KD 0] (0] M) [0] (0]

K= 1| [0 [K¥] [0] |,  [Mra]= {[01 [M] (0] } (18)
Lo 0] [k 0] 0] [M]
[ (k%] + [K3] [0] [0]

[Ko] = 0] K3+ (k5] (k5] + [KE] |, (19)
o k3] + k3] (k5] + [KE)

and the antisymmetric matrix [K;] by
0] (k2] - (k%] [K%] - [KY]
&) = | —([K%] - [kB]") 0] 0] . (20)

—([x&] - &51") 0] 0
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The homogeneous version of Eq. (17) defines an eigenvalue problem in w? for a given ¢. Denote the
eigenvalues 2 (&) and the right and left eigenvectors by ¥, (£) and W, (&), respectively. The eigenvectors are
normalized such that

VNVTm[MTot}Zn - 5mm (21)
hence
W (K] + EK] + [Ko)) V= o, (22)

where d,,, is Kronecker’s delta. Using relations (21) and (22), and Eq. (17) the solution U* may be written as

SHDE o), 23)

2w ol

U'(¢ o) =

n=1

N being the number of nodes in the cross-section.

3.3. Inverse Fourier transform

An inversion with respect to ¢ is first considered. Egs. (15) and (23) then give

1 3N 00 WTn F* 7 "
ﬂZl —o0 % L/”(f)e “rde. (24)

Q* (x17 CO) =
The analysis is now limited to positive x;. The integral in Eq. (24) is evaluated by extending the integrand to
complex ¢ and in this case by adding a semi-circle of infinite radius in the upper complex half-plane to the
path of integration. The complex continuation of the integrand will be an analytical function of ¢ for a
given o except at points where the denominator vanishes, i.e. the poles of the integrand. This can be shown
using Cramer’s rule for solving systems of linear equations (Eq. (17) in this case) and the fact that the
sources considered here give components in £* that are polynomials. The contribution from the semi-circle
will vanish because of the exponential in the integrand, and therefore the integral is given by a sum of
residues of the integrand at the poles,

W LE( .
= V 1pX1 25
f(x, @ IZ 2wcgp € (25)

The poles, ¢, are the values of ¢ that for a given w satisfy the homogeneous version of Eq. (17), W, and ¥,
are the corresponding left and right eigenvectors and

ow
Cop = =% . 6
08 le—,
The group velocity, ¢y, can be expressed in terms of eigenvectors and matrices as
ow 1
o¢ é=¢, 20~ p( SplKo] + i 1])~P7 (27)

which is shown by a Taylor expansion of the homogeneous version of Eq. (17), expressing the derivative of
the eigenvectors as a sum of the eigenvectors and using relations (21) and (22). Poles on the real axis are
included in Eq. (25) only if ¢y, > 0.

The eigenvalue problem defined in the homogeneous version of Eq. (17) is recast to an ordinary gen-
eralized eigenvalue problem in ¢ by doubling the size of the matrices, see Kohl et al. (1992b) for example,
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(PR R ) [sﬂ - m 28)

where [I] is the identity matrix. The properties of this eigenvalue problem is discussed in Kohl et al. (1992b)
and the most important ones are restated here. From the symmetry properties of the original problem it
follows that, if ¢ is a real or imaginary eigenvalue with the eigenvector V, then —¢ is also an eigenvalue with
the eigenvector W. If ¢ is a complex eigenvalue with the eigenvector ¥, then so are —¢, ¢ and —¢& with
eigenvectors W, W and V, respectively. The overbar signifies complex conjugation. These properties are
useful in computations since both right and left eigenvectors are needed, and it is often more efficient to
compute extra eigenvalues (in this case those in the lower half-plane) than to solve two eigenvalue prob-
lems.

The spectrum given by Eq. (25) is evaluated for discrete values of w, where the maximum value, @y,
defines the maximum frequency considered, corresponding physically to a maximum frequency in a low-
pass filter. In general there will be 6N poles or eigenvalues for a given w. It is unrealistic to compute all
eigenvalues so a truncation, or filtering in £, is needed. For large enough values of x; the contribution from
poles with imaginary parts larger than a given value will be negligible. Removal of poles with real parts
larger than a certain value corresponds physically to a receiver with a limited wavelength resolution. For a
transducer, for example, this is connected to its physical dimensions. In reality there is also material
damping and short wavelengths will be damped more with distance than long wavelengths. Given the
spectrum, the time signal, U, is computed using FFT.

4. Examples

Consider a symmetric cross-ply laminate ([90/0,/90]) with material properties according to Table 1, and a
width to thickness ratio of 10. Owing to the symmetry of the cross-section the modes of vibration can be
divided into four classes, based on whether they are symmetric or anti-symmetric with respect to the two-
and three-coordinates. The four different classes are referred to by the displacement characteristic of the
lowest mode. Hence, the modes that are symmetric with respect to both coordinates are called extensional
modes here. The modes referred to as compliant flexure modes are symmetric with respect to the two-
coordinate and antisymmetric with respect to the three-coordinate, and vice versa for the stiff flexure
modes. The torsional modes, finally, are antisymmetric with respect to both coordinates. These symmetry
properties are used as boundary conditions to reduce the size of the finite element model when solving the
eigenvalue problem given by the homogeneous version of Eq. (17).

One-fourth of the cross-section was divided into rectangular planar nine-node Lagrange elements with
the same aspect ratio as the cross-section. Satisfying convergence (less than 5% error in the components of
Q *) was achieved by using a total of 64 elements. All computations were performed in MATLAB (Trade-
mark of Mathworks Inc.) using the built-in routine for eigenvalue extraction for sparse matrices. After
computation of the eigenvalues and eigenvectors the symmetry properties were used to translate the

Table 1
Properties of the glass fiber reinforced epoxy ply
E; (GPa) Er (GPa) vir vrr Gyt (GPa) p (kg/m’)

46 18 0.29 0.42 7.9 1930
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eigenvectors for one quarter of the cross-section to eigenvectors for the whole cross-section. These eigen-
vectors were then used in Eq. (23) together with the transformed consistent nodal forces F*.

Figs. 2-5 show dispersion curves for the compliant flexure, stiff flexure, extensional and torsional modes,
respectively. The diagrams labeled a show circular frequency against both real, imaginary (solid lines) and
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Fig. 2. Dispersion curves for the compliant flexure modes: (a) Circular frequency against real, imaginary (—) and projected complex
(- - -) wave numbers. (b) Group velocity for the propagating waves versus circular frequency.
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Fig. 3. Dispersion curves for the stiff flexure modes: (a) Circular frequency against real, imaginary (—) and projected complex (- - -)
wave numbers. (b) Group velocity for the propagating waves versus circular frequency.

complex (dashed) wave numbers. Real and complex wave numbers are increasing to the right and left
respectively, and the real and imaginary parts of complex wave numbers are projected accordingly. The
diagrams labeled » show group velocity for the propagating waves (i.e. real wave numbers) versus circular
frequency.
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Fig. 4. Dispersion curves for the Extensional modes: (a) Circular frequency against real, imaginary (—) and projected complex (- - -)
wave numbers. (b) Group velocity for the propagating waves versus circular frequency.

4.1. Matrix cracking

The consistent nodal forces describing matrix cracking are integrated from the volume forces given by
Eq. (3) and the basis functions. The specimen is assumed to be loaded to a strain & in the 1-direction, which
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Fig. 5. Dispersion curves for the torsional modes: (a) Circular frequency against real, imaginary (—) and projected complex (- - -) wave
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numbers. (b) Group velocity for the propagating waves versus circular frequency.

is set to 0.6% in accordance with experiments on the material (Adolfsson and Gudmundson, 1999). Dis-

regarding edge effects, this strain gives the following stress in the 90°-plies

6_900 B E]%ET + (1 — 2UiT)ELE2 :
(Ev — Ervir)(EL + Er)
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The static crack opening displacement can be estimated using the fact that the specimen is much wider
than it is thick. The crack is thus in a state of generalized plane strain. Referring back to the discussion in
Section 2.1 the static crack opening of the surface crack is taken to be, Wu and Carlsson (1991),

h (1—=402 .
A () = 75 %5? (o + oon + ozn® 4 aan’), (30)

where the dimensionless coordinate # is defined by the relation

N
NS

m+1), 5<xs<h (31)

X3 =

and
o = 4.486, oy = —0.7635, oz = 0.3453, og = 0.0456. (32)

In Eq. (2), the time dependent part of the matrix crack source, the crack propagation velocity was set to
v=0.1(E_/ p)l/ *, which translates to 488 m/s for the material. In addition to the internal volume forces
there are non-zero surface tractions, s;, where the crack extends to the surface of the specimen. In this
case

Sy, = —C1122Au5ta[(X3)5(xl)Jm(—b, t) t>0, x,=-b

33
Sy = CllnguStat()Q)é(X])Jm(b, l) t> 2b/1), Xy = b ( )

and
S3 = C1133Au5““(h)5(x1)Jm(xz,t) X3 = h. (34)

In computing the nodal forces, F;, the surface tractions can be treated in the same way as the volume forces.

Expression (25) was evaluated up to wm,, = 10(EL/ p)l/ 2(21))71 with a resolution of wp,/500. The ei-
genvalues with the smallest magnitude were computed, and the number of computed eigenvalues increased
with frequency from 16 to 32 to assure that no real eigenvalues were excluded. The excluded eigenvalues
had imaginary parts of at least 5 x 2b, so their influence in the computations was several orders less than
numerical inaccuracies. The resulting spectrum for positive @ was then expanded to include negative
o by complex conjugation. Finally, this spectrum of 1001 values was inverted using MATLAB’s FFT
algorithm.

Figs. 6-9a and b show the velocity due to matrix cracking in the, for AE application most important,
3-direction. The velocities are evaluated at x, = /2, x; = h and (a) x; = 5b and (b) x; = 10b. Figs. 6-9 show
compliant flexure, stiff flexure, extensional and torsional modes, respectively. Velocity in the 2-direction for
stiff flexure modes is shown in the Fig. 10a and b. All the velocity components for the extensional mode
is shown in Fig. 11. In all cases the signal was subjected to a fifth order Butterworth filter. This was
done with the filter routines in the MATLAB signal processing toolbox. The cut-off frequency was set to
9(EL/p)1/2(2b)71, giving the frequency response shown in Fig. 12.

4.2. Fiber fracture

The volume forces given by Eq. (4) are integrated to get the nodal forces F. The assumed properties of
the glass fibers and the epoxy matrix are given in Table 2. Using the rule of mixtures, see for example
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Fig. 6. Velocity in the 3-direction for the compliant flexure modes at x, = b/2, x; = h and x; = 5b (a and ¢) or x; = 105 (b and d), due
to matrix cracking (a and b) and fiber fracture (c and d).

Gibson (1994), and the known value of longitudinal modulus, Ep, or the density, p, the values of Table 2
give the fiber volume fraction, J; = 0.6. The ratio between fiber diameter and specimen width was set to a
typical value, /b = 5 x 107%, In order to excite all types of modes the position of the fiber fracture was set
to hy = h/4, by = b/2. The strain, g, was assumed to have the value 2%. It was also assumed that the
fracture takes place during the time t = 2r/(E;/p;)"*. The same frequency resolution, filter etc. as for
matrix cracking was applied in this case. The velocity response due to fiber fracture is shown in Figs. 6-10c
and d. The observation point is also the same as for matrix cracking.

5. Discussion

The model presented for AE contains two parts. The first part is source modeling. A large uncertainty in
this is the assumed time dependence, but detailed direct information on the time dependence is hard
to obtain because of the small time and length scales involved. More refined techniques for obtaining
the static openings could also be used but as discussed below it is not needed for the wavelengths con-
sidered.

The wave-propagation model is thought to be very accurate provided that the material is elastic. In
reality, however, viscoelastic material behavior can be expected and it can possibly have large effects on the



M. zzlberg | International Journal of Solids and Structures 38 (2001) 6643-6663 6657

x 10”7 x10™"

a) 3 ¢)

. . 1
Uz o e Uy N
EL/p p /EL/p 0 wy’V‘""‘

1 I
2 | l
-3 2
0 10 20 30 40 50 0 10 20 30 40
tJE./p 1JEL/P
107 2b A1 2b
b) 3 X d) x 10
» 2
. Ll ; |
iy H M t3 A
A AA~AN
EL/p ) EL/p 0 V LAA4
| 1/
_2 _1
-3 2
0 10 20 30 40 50 0 10 20 30 40
tJEL/P tJEL/p
2b 2b

Fig. 7. Velocity in the 3-direction for the stiff flexure modes at x, = /2, x3 = h and x; = 5b (a and ¢) or x; = 105 (b and d), due to
matrix cracking (a and b) and fiber fracture (c and d).

signals. Viscoelastic behavior could, however, be introduced by the use of complex valued stiffnesses, see the
work by Mal and Lih (1992).

Looking at the dispersion curves found in Figs. 2a—5a a similarity can be seen between the compliant
flexure modes in Fig. 2 and the torsional modes in Fig. 5, and also between the stiff flexure modes in Fig. 3
and the extensional modes in Fig. 4. For the cross-section considered the wave propagation thus seems to
be highly dependent on the nature of the symmetry condition with respect to the three-coordinate. A
feature seen in the dispersion diagrams is that complex valued branches (dashed) emanate from stationary
points on the real or imaginary branches. Furthermore, the optical modes are all stationary at £ = 0. These
properties are also found in dispersion diagrams for homogeneous isotropic cylinders and plates as dis-
cussed by Onoe et al. (1962) and Mindlin (recited in Miklowitz (1984)). The dispersion curves, especially the
complex parts, were in those cases found to be very dependent on the value of Poisson’s ratio. A similar
behavior can be expected for inhomogeneous waveguides. The complex and imaginary branches, however,
have a small influence on the time responses presented. The reason is that for the given values of x; the
exponential in Eq. (25) becomes very small. The exceptions are poles located close to the real axis for which
the slope, or group velocity, tends to be small, which in turn means that the contribution will arrive late in
the signal. No filtering in ¢ was needed, since all the excluded poles in the computations have large
imaginary parts. The maximum value of & used for the propagating modes corresponds to a wavelength of
0.36b. This translates to a little more than two elements per wavelength in the finite element model, which
must be considered as a minimum requirement. Also, that the smallest wavelength is 7.2 times larger than
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the height of the matrix crack, which justifies the x,-dependence assumed for the matrix crack. If smaller
wavelengths are desired this dependence has to be modified.

The time histories shown in Figs. 6-11 are not directly comparable to those obtained in AE experiments
because the receiving system, especially a transducer, will affect the recorded signal. A transducer will, for
example, measure the average signal over the area in contact with the specimen, and the time histories in
Figs. 6-11 are due to point values. The averaged response could, however, be synthesized from the point
values. Important frequencies in AE experiments on composite specimen are typically less than 500 kHz (de
Groot et al., 1995) and the frequency range covered in the computations corresponds to approximately 300
kHz, so this work is potentially useful in interpreting experiments.

A comparison between matrix crack (a and b) and fiber fracture signals (c and d) shows that the former
has less high frequency content and longer duration than the latter, as can be expected from the assumed
time dependence. The matrix crack signals also have much larger amplitudes than those from fiber fracture,
but in reality fiber fracture may involve mechanisms not modeled here. For example, an avalanche of fiber
fractures may be triggered by a single fracture resulting in a signal with longer duration and larger am-
plitude.

Comparing the response for different symmetry classes it is seen that the vertical velocity for the com-
pliant flexure modes and the torsional modes (Figs. 6 and 9) are much larger than the velocity for the stiff
flexure and the extensional modes (Figs. 7 and 8). This, however, is highly dependent on the location of the
matrix crack or fiber fracture. The vertical velocity due to stiff flexure and extensional modes can to some
extent be thought of as lateral contraction velocities. For the stiff flexure modes the largest velocity is in the
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2-direction (Fig. 10) and for the extensional modes the largest velocity is in the 1-direction (Fig. 11). The
duration of the square pulse in the top diagram of Fig. 11 is directly related to the time it takes for the crack
to grow across the width of the specimen and so is the distance between the two sharp pulses in the middle
diagram.

The response in the vertical direction due to extensional motion, as shown in the bottom diagram in Fig.
11 show four sharp pulses. Two of these, the first and the third, correspond to the negative and positive
flanks of the square pulse in the top diagram. These pulses in the vertical response can be seen as lateral
contraction due to the square pulse. Lateral contraction is proportional to the strain in the axial direction,
or approximately the derivative of the signal with respect to time if dispersion is small. The other two pulses
in the vertical direction, the second and fourth, coincide with two pulses in the velocity in the 2-direction.
There are two indications that those pulses are due to a wave which, unlike the classical extensional wave,
has its main displacement component in the 2-direction. Firstly, the distance between the pulses and the fact
that they travel together at a slower velocity than the square pulse seen in the top diagram. Secondly, if the
signal is filtered with a low cut-off frequency (1(£L/ p)l/ *(2b)™") the two pulses disappear. This means that
the slower wave is associated with the high frequency content in the signal. Also, looking at the mode
shapes it is seen that the lowest extensional mode shifts from having its main component in the 1-direction
at low frequencies to having its largest displacement in the 2-direction for higher frequencies. It is possible
that the slow wave, visible with high frequency content in the signal, reflects this change, and as is seen from
the dispersion curves in Fig. 4 the velocity of the lowest mode is higher for low frequencies than for high
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frequencies. This discussion concerning Fig. 11 illustrates the difficulties in interpreting the AE signals
merely in terms of the classical, inherently low frequency, bar and beam extensional and flexural waves. For
example, the appearance of the slower wave dominated by motion in the 2-direction cannot be explained in
those terms.

The square pulse in the top diagram of Fig. 11 opens a possibility to measure the average velocity of a
propagating matrix crack by placing strain gauges in the axial direction. If one gauge is placed on each side
of the specimen the interference from Compliant flexure modes can be minimized. The general shape of the
square pulse is clearly discernible even if frequencies above 1.5(Ey/ p)l/ 2(2b)_l are filtered away. For a
typical specimen this corresponds to 50 kHz, so the limited band-width of the strain gauges may be suf-
ficient.

Dispersion is evident in all time histories, but is especially marked in the 2-component of the stiff flexure
modes, as shown in Fig. 10. Small spurious vibrations before arrival of the real signal as seen in Fig. 8c, for
example, are linked to large contributions to the spectrum from poles with very small group velocities.
Resolution in w helps to a point but it is probably more efficient to add a small complex part to w in the
computations as is done in_the work by Weaver et al. (1996).

In the previous work (Aberg and Gudmundson, 1999) a higher order beam model described wave-
motion, and a maximum frequency of 2.5 x 2wb(EL/ p)fl/ * was used. A comparison of the absolute value
and phase of U from the beam model and the finite element model show that the choice of maximum
frequency was justifiable. The main deficiency of the model of Aberg and Gudmundson (1999) was the
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neglect of torsional modes. They were not included because it was thought that they would have a small
influence on the wave-motion. It is evident from Fig. 9 that this is not the case.

6. Conclusions

With the presented method important AE events such as matrix cracking and fiber fracture can be
modeled and relevant frequencies, typically up to 300 kHz, may be included in the resulting wave. There
are, however, features not modeled which may prove important, for example material damping. Crucial
steps therefore still remain before the results presented herein can be applied directly to AE experiments.
The most important is the frequency response of the receiver system.

Judging from the time histories presented, dispersion is a very important phenomenon for wave prop-
agation in tensile test specimen, because it alters the appearance of the signal significantly. It is also seen
that the effect of the torsional modes is important. The vertical velocity on the surface of the specimen
resulting from matrix cracking is much larger, up to a factor 10°, than the velocity due to a single fiber
fracture. For the geometry studied there is a striking similarity between dispersion curves for compliant
flexure modes and torsional modes, and also between extensional and stiff flexure modes.

An experiment to determine the average matrix crack propagation velocity from the low frequency (up
to 50 kHz) content in the extensional wave was suggested. The difficulties in explaining the response in
terms of classical extensional and flexural beam and bar waves were also illustrated.
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Table 2
Properties of the glass fiber (f) and the epoxy matrix (m)
E; (GPa) Up pr (kg/m) E. (GPa) U P (kg/m’)
73 0.22 2492 4.0 0.35 1120
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